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A new approach to determining the unit-cell vectors from single-crystal

diffraction data based on clustering analysis is proposed. The method uses the

density-based clustering algorithm DBSCAN. Unit-cell determination through

the clustering procedure is particularly useful for limited tilt sequences and

noisy data, and therefore is optimal for single-crystal electron-diffraction

automated diffraction tomography (ADT) data. The unit-cell determination of

various materials from ADT data as well as single-crystal X-ray data is

demonstrated.

1. Introduction

The description of a periodic object is based on the determi-

nation of its internal regularity – the periodicity law. In crys-

tallography the determination of the unit-cell vectors is based

on the analysis of the periodicity of three-dimensional

reflection positions and is essential for the analysis of a crys-

talline structure. Automated determination of unit-cell vectors

for single-crystal X-ray data relies on the projection of the

three-dimensional reflection positions onto a certain direction,

and the periodicity along this direction is assessed by one-

dimensional Fourier transformation (Steller et al., 1997; Sauter

et al., 2004; Rossmann, 2001). This works by scanning the

projection vector over the complete solid angle of the data set.

Significant Fourier terms are observed in the one-dimensional

fast Fourier transform (FFT) when directions orthogonal to

widely separated planes of reflections are encountered. Given

these directions and the periodicity parameters, the orienta-

tion matrix can be calculated.

For a long time the use of the single-crystal electron

diffraction method was restricted to analysis of low-index

zonal patterns (Dorset, 1995) with unit-cell basis vectors

determined either manually using a Vainshtein plot (Vain-

shtein, 1964) or dedicated automated routines (Zou et al.,

2004; Jiang, Georgieva, Nederlof et al., 2011; Jiang, Georgieva

& Abrahams, 2011). The situation changed drastically with the

introduction of the automated diffraction tomography (ADT)

technique, employing electron-diffraction data collection

through a fine-step tilt around an arbitrary crystallographic

axis (Kolb et al., 2007, 2008). Conceptually ADT is comparable

to !-scan X-ray data collection using an area detector (Fig. 1).

The data are collected in transmission geometry; the crystal is

tilted around the primary goniometer axis �. Diffraction

patterns are usually recorded on a charge-coupled device

(CCD) camera, although image plates or film can also be used.

Frames are collected using a tilt step of about 1� within a

certain tilt range. The range over which the data are collected

depends on the purpose of the data acquisition (determination

of unit-cell parameters can be performed with relatively short

Figure 1
Schematic view of (a) the experimental geometry of an ! scan in a four-
circle X-ray diffractometer and (b) the ray path in a transmission electron
microscope in diffraction mode.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB35
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767312026438&domain=pdf&date_stamp=2012-07-20


tilt sequences, ab initio structure solution requires data with

high completeness) and on the experimental setup (some

transmission electron microscopes can have a very short pole-

piece gap restricting the tilt range of the sample holder).

Crystal structures of diverse materials have been solved ab

initio using direct methods (Kolb et al., 2011) from ADT data,

just as is done in single-crystal X-ray analysis. Single-crystal

ADT data suitable for ab initio structure analysis have been

collected from crystals with dimensions as small as 50 nm

(Mugnaioli et al., 2012; Birkel et al., 2010). In principle, ADT

mimics single-crystal X-ray analysis at the nanoscale; however,

some significant differences occur due to the differing radia-

tion types and their associated interactions with the sample.

Electrons interact with matter much more powerfully than

X-rays and, therefore, a much smaller sample volume can

deliver substantial diffraction intensity data. The electron

wavelength is smaller, which in turn makes the Ewald sphere

very large, to the extent that it almost represents planar cuts

through reciprocal space. Other important features of ADT

data are:

(a) The size of the electron beam used for diffraction is

freely adjustable by the microscope lenses. Different situations

can be realised: the complete crystal can be illuminated

(‘bathed’ in the beam) or only a part of the crystal can be

illuminated. The latter setup is especially useful for beam-

sensitive materials, as consecutive frames can be collected

from a fresh unexposed crystal area. In this case, crystal

bending may add distortion to the data geometry.

(b) The excitation error, which manifests itself as significant

intensity appearing on diffraction patterns far away from the

reflection centre; this can be relatively large for electron-

diffraction data.

(c) The major consideration in a transmission electron

microscopy (TEM) study is the thickness of the sample in the

direction of transmission. The elongation of the reflection due

to the size effect causes additional ambiguity in the reflection’s

true position.

(d) In many nanocrystalline materials the crystals are tightly

agglomerated, making it difficult to collect a tilt series from a

clearly separated single crystal. The number of reflections

appearing from additional crystals is usually low, but none-

theless they present a significant source of noise in the data set

and can cause problems during the data-reduction process.

(e) At present, most data sets are collected using CCD

cameras. This recording medium often suffers from the hot-

spot problem: fast X-rays stochastically produce high-contrast

spots on the camera, which may be falsely interpreted as

reflections.

(f) In X-ray diffraction, the background has a well defined

and characterized pattern. This does not hold for electron

diffraction. The background profile can be considerably

affected by dynamical effects, including formation of Kikuchi

lines. On the other hand, the strong interaction between the

incident electrons and the CCD phosphor can also contribute

to the diffraction pattern in a very nonlinear fashion.

The combination of all the aforementioned problems gives

rise to the fact that the Bragg reflections’ positions and

therefore the reciprocal-lattice nodes are not as clearly

defined for electron ADT data as they are for single-crystal

X-ray data. This additional noise in the data often causes unit-

cell search methods based on Fourier analysis to fail. Fig. 2

shows a one-dimensional Fourier transformation of main

projections of reflection positions. The top row (Fig. 2a,b) are

Fourier transforms of reflection-position projections of sample

D (see Table 1) onto the main crystallographic directions c and

b calculated from single-crystal X-ray data. The periodicity

along both directions is clearly resolved. The bottom row (Fig.

2c,d) shows Fourier transforms of reflection-position projec-

tions onto a and c of sample B (Table 1) from its ADT data.

The periodicity of the lattice along the a direction (corre-

sponding to the unit-cell parameter of 5.059 Å) is well

resolved, while the periodicity along the c direction (32.537 Å,

comparable to the lattice parameter shown in Fig. 2b of

36.389 Å) is not evident at all.

Here we propose an alternative method for determining the

orientation matrix from electron-diffraction single-crystal data

collected using the ADT technique. The method is based on

the cluster analysis of difference vectors, calculated from

three-dimensional Bragg peak positions. We review a variety

of clustering algorithms, highlighting their strengths and

weaknesses with regards to determining unit-cell parameters

from ADT data, and give some examples of how the selected

algorithm performs.

2. Difference-vector space built from ADT data: a
closer look

Owing to the small wavelength, electron-diffraction patterns

are almost planar cuts through reciprocal space. This means

that if a short tilt sequence is collected within a certain tilt

range, the three-dimensional information within the reciprocal

volume will only be present within this wedge, while for single-

crystal X-ray diffraction, due to the smaller radius of the

Ewald sphere, the information within the reciprocal volume is

distributed differently. Basic unit-cell vectors do not necessa-

rily lie within the measured fraction of the reciprocal space,
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Table 1
Samples used for testing the algorithm.

Sample Chemical composition Space group, unit-cell parameters Reference

A Barite (BaSO4) Pnma: a = 8.8842, b = 5.4559, c = 7.1569 Å Jacobsen et al. (1998)
B Pseudo-spinel (LiTi1.5Ni0.5O4) P3c1: a = b = 5.059, c = 32.537 Å Kolb et al. (2011)
C Paracetamol (orthorhombic) Pcab: a = 11.805, b = 17.164, c = 7.393 Å Haisa et al. (1974)
D Propellan (X-ray data) P21/c: a = 8.0258, b = 36.389, c = 7.8184 Å, � = 99.493� Mirion et al. (2012)



therefore in a first step difference vectors for all measured

reflection positions are calculated. In a way, difference vectors

represent the autocorrelation of the lattice and therefore

enhance the short vectors around the origin. These short

vectors are likely to include the basis vectors of the lattice.

Unit-cell basis-vectors determination within the difference-

vectors space (DVS) is routinely done in single-crystal X-ray

crystallography (Kabsch, 1993, 2010); nevertheless, due to the

nuances of electron-diffraction data as listed above, the DVS

from ADT data also has specific characteristics.

2.1. Determination of reflection positions

An ADT tilt series represents a stack of electron-diffraction

patterns with an angular relationship between them – usually

an equidistant tilt step of 1�. Preprocessing of the data

includes an optional background correction, shifting of the

patterns to a common origin (the exact position of the central

beam is usually unknown and has to be determined; further-

more, the shift can be different for different patterns in the

same stack) and rotation of the patterns to the tilt axis [the tilt-

axis azimuthal rotation within a stack is a priori not known and

can be calculated for each stack using the internal consistency

of the lattice as a criterion, see Kolb et al. (2009)]. The

preprocessing steps are detailed in Kolb et al. (2008).

Once the preprocessing has finished, the positions of the

reflections can be extracted for unit-cell determination. The

reflections can be found within the two-dimensional diffrac-

tion patterns – frames (two-dimensional peak search), or

within the reconstructed three-dimensional diffraction volume

(three-dimensional peak search). Two-dimensional peaks are

more sensitive to position uncertainty, due to the problems

listed above, while peaks found within the three-dimensional

diffraction volume are better defined due to averaging:

neighbouring voxels are fused to a single reflection. Therefore

hereafter we concentrate on the use of three-dimensional

peaks.

A three-dimensional peak-search procedure locates three-

dimensional objects with an overall intensity above a given

background threshold. Besides, a limit for the minimum

volume of a reflection (in voxels) is set to filter out hot spots,

and for a maximum volume to exclude fused reflections. For

each reflection found, the arithmetical mean of all voxels

assigned to the ith reflection rmean
i , the centre of gravity rw:mean

i

research papers

538 Sebastian Schlitt et al. � Unit-cell parameters from electron diffraction Acta Cryst. (2012). A68, 536–546

Figure 2
One-dimensional Fourier transform of reflection positions projected onto the main crystallographic directions. Projections of single-crystal X-ray
data for sample D (see Table 1) onto (a) direction c and (b) direction b; and ADT tilt-series data for sample B (Table 1) onto (c) direction a and (d)
direction c.



and the position corresponding to the maximal intensity voxel

rmax
i are calculated. If a hot spot falls onto a reflection, the

position of rmax
i will be significantly influenced, while rw:mean

i is

less sensitive to it. Nevertheless, this is a rare situation, and in

practice all three positions are very close to each other, so any

of them can be used.

2.2. Difference vectors

After a set of three-dimensional reflection positions is

extracted, difference vectors are calculated between all pairs

of positions except for the primary beam. Fig. 3 schematically

shows the idealized two-dimensional lattice, difference vectors

calculated for the lattice and the difference-vector space

(DVS). Difference vectors point exactly to a node of the

lattice, therefore the lattice of the DVS coincides exactly with

the original lattice.

For experimental data the lattice will never be perfect. The

distortion of the lattice leads to a large variety of difference

vectors with varying but similar lengths. Owing to the varia-

tion in difference-vector lengths, it is no longer possible to

assume the difference vectors to be the unit-cell lengths or a

multiple of these. Thus, the difference-vector space consists of

groups of spots around each lattice node. The extent of points

spread within the groups is correlated with the amount of

distortion in the original lattice.

The analysis of these kinds of data is done through data

clustering (see Kaufman & Rousseeuw, 1990). The aim of

clustering is to group or classify the data based on a specific

property, fitting the problem. In our case the property is the

mutual proximity of points in the difference-vector space.

Thus, the DVS should include clusters, the arrangement of

which reflects the periodicity of the lattice. The number of

clusters is related to the lattice parameters and cannot be

known a priori. Apart from clusters, noise can be present in

the data originating from reflections not coherent with the

major lattice: additional crystals or hot spots.

The outcome of the clustering procedure is a list of clusters

with their coordinates. These clusters should represent the

reciprocal lattice and they are typically arranged around the

origin of the lattice. Once a sufficient number of clusters are

found, the unit-cell basis vectors can usually be determined

within the clusters as three shortest non-coplanar vectors.

Subsequent Niggli cell reduction (Niggli, 1928) or a basis

transformation in order to detect possible lattice centring

finally delivers the unit-cell metric and the orientation matrix

related to the ADT data set.

The number of difference vectors for n reflection positions

is nðn� 1Þ. The difference vectors carry inherent inversion

symmetry, thus there are only nðn� 1Þ=2 independent vectors.

For a set with 1000 reflection positions there will be around

half a million difference vectors which need to be analysed.

Even though the lattice basis vectors are likely to be repre-

sented by the shortest difference vectors, and therefore there

is no need to analyse longer difference vectors, a fast and

efficient algorithm is sought. In the next section we will

explore the available options for clustering the data and

finding unit-cell vectors.

3. Overview of clustering approaches

Clustering analysis of data is used in many fields to group data

into similar (homogeneity) and dissimilar (heterogeneity)

categories, and is used in fields as diverse as data mining and

image analysis. There are three basic types of clustering

methods: partitioning methods, hierarchical methods and

density-based methods, each of which is described in brief

below. In our case we wish to find a clustering algorithm that

will group the difference vectors together to produce a

difference-vector lattice which corresponds to the lattice of

the unit cell under investigation, given no prior knowledge of

how many clusters will be produced or what shape the clusters

will form.

3.1. Partitioning methods

Partitioning methods divide the data D into k clusters,

where k is a user-defined input parameter. In order to deter-

mine a good choice of k a significant amount of knowledge

about D is required, which in many cases is not available.

Principally, it is possible to run the clustering for various

values of k, and then use a suitable figure of merit to evaluate

the results. The additional evaluation of the results can

significantly increase the run time depending on the range of k.

Typically, partitioning methods start with a random or given

partition of the data D into a set C of k clusters. Each cluster Ci

(i = 1, . . . , k) is represented by one object xi. This can, for

instance, be the centre of gravity or the mean of the cluster

(this is known as k-means method, see MacQueen, 1967), or a

data point closest to the physical centre of the cluster (k-

medoid method, see Kaufman & Rousseeuw, 1990). The rest

of the data are then assigned to a cluster in an iterative
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Figure 3
Top row: idealized two-dimensional lattice, difference vectors calculated
for this lattice and difference-vector space where the positions of vectors
overlap; bottom row: distorted lattice, difference vectors calculated for
the distorted lattice and the difference-vector space. For the distorted
lattice the difference-vector space consists of groups of points around
each lattice node.



process, using a given criterion, most commonly the square-

error criterion (e.g. k-means):

Pk

i¼1

P

x2Ci

jjx� xijj
2
2:

Minimizing of the square-error criterion leads to high homo-

geneity within clusters. In each iteration a two-step procedure

is used: first, k representatives optimizing the criterion func-

tion (e.g. the centre of gravity for each of the k clusters) are

determined; subsequently, the clusters are rearranged by

assigning each object to the ‘closest’ representative. The

iteration stops when no changes occur after the rearrange-

ment. All data points are assigned to a particular cluster.

Therefore, noise in the data makes the assignment of points to

clusters ambiguous, making the algorithm not reliable.

A well known method, related to k-means, is Expectation

Maximization (EM; Dempster et al., 1977), which differs from

k-means by determining a fuzzy clustering partition. In a fuzzy

partition certain probabilities for belonging to a cluster are

assigned to each data point, then the clusters are formed based

on a probability criterion. Other common methods related to

k-medoid are Partitioning Around Medoids (PAM; Kaufman

& Rousseeuw, 1990), Clustering LARge Applications

(CLARA; Kaufman & Rousseeuw, 1990), and Clustering

Large Applications based on RANdomized Search

(CLARANS; Ng & Han, 1994). All these methods are

computationally expensive. To reduce the computation time

CLARA divides the data into subsets and uses PAM for every

subset. This leads to faster computation time but a dete-

rioration of the clustering quality, because the global minimum

of the criterion function is not guaranteed to be reached.

3.2. Hierarchical methods

Hierarchical methods are often the most recognizable of the

clustering methods because of the tree or dendrogram used to

represent the data. They have already been used in crystal-

lography (for instance for the analysis of X-ray powder-

diffraction profile matching; see Barr et al., 2004). A dendro-

gram has a branch at every node representing a cluster and a

horizontal cut at any height is a possible partition of the data

D. In the root node D consists of only one cluster. Below the

data are sequentially divided into smaller, finer partitions until

each cluster consists of only one object (leaves of the tree).

The dendrogram can be built from root to leaves (top-down

divisive methods) or from leaves to root (bottom-up

agglomerative methods). In contrast to partitioning methods,

the number k of clusters is not needed as an input parameter.

The clusters are merged or divided until a termination

criterion is reached.

The single-linkage (Sibson, 1973) algorithm is an agglom-

erative method which in each step merges the two nearest

clusters (Fig. 4). In this case (and generally for agglomerative

methods) a termination criterion is the minimal distance dmin

between clusters. For the single-linkage algorithm, for

example, the iteration stops if the distance between the two

nearest clusters is smaller than dmin. The selection of the

termination criterion is the key point for all hierarchical

methods, as it assures that the data are partitioned into clus-

ters of appropriate size to reveal the desired information in

the data. If the termination criterion is not known initially, the

full dendrogram should be calculated. The appropriate data

partitioning can then be selected.

Hierarchical methods can tolerate a low amount of noise in

the data. Hierarchical methods are typically slow [O(n2) or

higher, where n is the number of points in the data set]. Typical

hierarchical methods are Balanced Iterative Reducing and

Clustering Using Hierarchies (BIRCH; Zhang et al., 1996) and

CURE (Guha et al., 1998). BIRCH first organizes the data into

a height-balanced cluster-feature tree (CF tree) in order to

divide the clustering into smaller problems. Then an arbitrary

clustering method (e.g. CLARANS) is applied to the leaves of

the tree to determine the partitioning of the data.

3.3. Density-based methods

The principal idea of density-based methods is to find high-

density regions separated by regions of low density. The main

criterion is that the density of the noise has to be lower than

the density of any cluster. These methods are particularly

stable in the presence of noise in the data. There are two major

ideas behind density-based methods. One defines dense
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Figure 4
Scheme of data clustering in the single-linkage method: (a) a data set consisting of nine points; (b) a dendrogram of the single-linkage procedure; (c)
clusters determined with single linkage and an optimal termination criterion.



regions through neighbourhoods of points (regions with a

minimum number of points inside). This is the main idea of

Density Based Spatial Clustering of Applications with Noise

(DBSCAN; Ester et al., 1996), which will be discussed in more

detail in x4. The other group of algorithms uses kernel density

estimation (KDE) through kernel functions (e.g. Gaussian

kernel), for instance DENsity-based CLUstEring (DEN-

CLUE; Hinneburg & Keim, 1998).

Density-based methods are able to deal with noisy data and

have no limitations on the cluster shape. These algorithms can

be implemented very efficiently with index-based data struc-

tures [O(n log(n)), e.g. DBSCAN and DENCLUE]. Among

other algorithms extending the idea of DBSCAN, Ordering

Points To Identify the Clustering Structure (OPTICS; Ankerst

et al., 1999), Density Differentiated Spatial Clustering (DDSC;

Borah & Bhattacharyya, 2008), Density Clustering Based on

Outlier Removal (DCBOR; Fahim et al., 2008) and the Shared

Nearest Neighbor clustering algorithm (SNN; Ertoz et al.,

2003) should be mentioned.

3.4. Applicability of clustering algorithms to ADT data

In order to cluster the DVS produced from ADT data

efficiently, an appropriate clustering technique is required.

Partitioning methods are not appropriate in this case because

they cannot handle noisy data. Additionally, the number of

clusters k can vary over a large range, thus making the

computations very time consuming.

The hierarchical methods are not best suited to the task

either, because they are not robust enough against particularly

noisy data such as can be encountered in ADT. Furthermore,

hierarchical methods are not computationally efficient enough

to deal with large data sets (as mentioned above, half a million

difference vectors can easily be produced from ADT data).

The density-based methods are robust to very noisy data

and can be efficiently implemented. In addition, there is no

restriction on the cluster shape. Therefore they are best suited

for DVS clustering. DBSCAN is preferred over DENCLUE

due to its easier implementation. Other extensions of

DBSCAN require more input parameters, which may give

additional flexibility during the clustering, but makes the

underlying philosophy less intuitive and understandable, and

thus the choice of the optimal parameters more problematic.

Other algorithms which do not require additional inputs are

not as efficient in implementation and have a runtime of O(n2)

or higher.

On the basis of the robustness to noise and computational

efficiency, as well as ease of implementation, we have opted

for the DBSCAN algorithm as our preferred method for

cluster analysis of ADT data in order to obtain unit-cell

parameters.

4. DBSCAN

4.1. The algorithm

The DBSCAN algorithm (Ester et al., 1996) uses two input

criteria to define the minimum density of a cluster: ", the size

of the neighbourhood which will be reviewed for each data

point, and the minimum number of points minPts which have

to be inside the neighbourhood to define a dense region as a

part of a cluster. In terms of DVS built from ADT data, these

two criteria define how many difference vectors should be

present within a specified region to form a cluster.

The DBSCAN algorithm clusters data in an iterative

procedure. First of all core points are identified. A core point is

a data point which has at least minPts different data points in

its "-neighbourhood (Fig. 5). The "-neighbourhood of a data

point p 2 D is defined as

U"ðpÞ :¼ fq 2 Djdistðp; qÞ � "g

for " > 0 and an arbitrary distance function dist (e.g. Euclidean

distance). The choice of the distance function affects the

clustering and should be adapted to the problem. In the case

of three-dimensional DVS, the Euclidean distance is a proper

choice. A data point p is called a core point iff |U"(p)| �

minPts. Core points are parts of very dense regions within a

data set. After the core points are found, the algorithm

identifies sets of directly density-reachable, density-reachable

and density-connected points of data.

A data point p 2 D is called directly density-reachable from

q 2 D with respect to " and minPts if

ðiÞ p 2 U"ðqÞ and ðiiÞ jU"ðqÞj � minPts:

These say that p is directly density-reachable from q if p lies

within the "-neighbourhood of a core point q (Fig. 5).

A data point p 2 D is called density-reachable from q 2 D

with respect to " and minPts if there is a chain of points

p1; . . . ; pm 2 D, p1 = q, pm = p, such that pi+1 is directly density-

reachable from pi. This essentially determines whether a series

of points in a chain belong to the same dense region or not

(Fig. 5).

As Fig. 5 shows, density-reachable is a non-symmetric rela-

tion: r is density-reachable from q but q is not density-

reachable from r. Both objects r and q should belong to the

same cluster.

A data point p 2 D is called density-connected to q 2 D

with respect to " and minPts if there exists a data point o 2 D

such that both p and q are density-reachable from o with

respect to " and minPts (Fig. 5). Density-connected is the

symmetric extension of density-reachable.
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Figure 5
A schematic representation of DBSCAN terminology (minPts = 5; p: core
point jU"ðpÞj ¼ 6; q: core point jU"ðqÞj ¼ 9; r: border point jU"ðrÞj ¼ 2).



A density-based cluster is defined as a maximal set of

density-connected points with respect to density reachability.

Therefore we are trying to maximize the number of density-

connected clusters in the data set, given the parameters for the

"-neighbourhood and the minimum number of points minPts.

All the points in the data set that do not satisfy the density-

connected definition are considered to be noise.

Clusters are formed by iteratively looking at each point in

the data set. If a given point satisfies the neighbourhood and

minimum number of points criteria, then it is considered to be

part of a cluster. This is achieved by first identifying a core

point. From each core point all density-reachable points are

collected to build a cluster. Then the iteration starts with the

identification of a new core point in the data set that does not

already belong to an existing cluster. For the proof of this

algorithm and further details see Ester et al. (1996).

During the calculation it is necessary to compute the

"-neighbourhood of each point only once. The naive imple-

mentation of this calculation computes the distance to each

data point and needs O(n) time for each calculation. There-

fore the whole algorithm has a run time of O(n2). By utilizing

efficient data structures such as R*-tree (Beckmann et al.,

1990) to determine the neighbourhood it is possible to

complete the calculation in O(log(n)) run time. If this is

realised within the DBSCAN algorithm, the complete run

time is O(n log(n)), which is suitable for large data sets.

4.2. Clustering control parameters – " and minPts

DBSCAN is implemented in the ADT3D package (Nano-

megas, Belgium) as a core routine of unit-cell-parameter

determination. The procedure can run automatically;

however, in some cases it requires additional adjustment of

the control parameters. The parameters can be changed

interactively by the user. Here, once more, we summarize the

action of " and minPts.

Each data set has a different reciprocal lattice given by the

unit-cell metric. Therefore, it can be necessary to adjust the

parameters " and minPts. Fig. 6 shows different situations

which can be realised when different control parameters are

used. For a given value of minPts, too high a value of the

"-neighbourhood can lead to a situation where a point of a

cluster falls into the "-neighbourhood of another cluster (Fig.

6a), causing a fusion of separate clusters (Fig. 6b). This can

either be resolved by reducing the "-neighbourhood size, or

alternatively, minPts can be increased to result in the ideal

cluster separation (Fig. 6c). In contrast, too small a value of "
can lead to a splitting of a cluster. If the chosen minimum

density for clustering (defined through the combination of the

two control parameters) is too high, it may happen that no

clusters will be found at all.

For high-quality data, the default clustering parameters are

often good enough to provide a satisfactory result. For very

limited data or materials with long lattice constants, additional

adjustment of the parameters is required. As " and minPts

substantially influence each other, it is recommended to

change them separately. One parameter can be fixed and the

result of the clustering can be analysed for various values for

the second parameter. The result of such an evaluation is

presented for data for material A in Fig. 7. All difference

vectors are sorted according to their ordinate value in order to

produce a smooth graph. On the left side of the figure (Fig. 7a)

" is fixed to the value of 3, and for the complete set of the

difference vectors the number of points lying inside the

3-neighbourhood is calculated. Now we should search for

regions with a high density. The start of the plot with a high

gradient (difference vectors 0 to approximately 2000) corre-

sponds to regions with a low density. The dense regions start at

the inflation point. To avoid including too many points from

low-density regions as border points into a cluster, the optimal

minPts should be slightly larger than that corresponding to the

inflation point. In Fig. 7(b) in contrast, minPts is fixed to the

value of 75, and for the complete set of the difference vectors

the minimum size of the neighbourhood is calculated so that

75 points are inside this neighbourhood. The optimal " value

should be chosen close to the inflation point, slightly shifted to

the region of higher density.

These plots do not give strict values for the parameters, but

show in which regions they should be. Since the parameters

are not completely independent, there is no single optimal set

of the parameters, but many pairs which give a similar result,
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Figure 6
Different situations of DBSCAN clustering for different control
parameters: (a) a critical situation with " smaller than the distance
between border points belonging to different clusters; (b) cluster fusion
with the same value of " as in (a) and minPts = 12; (c) cluster separation
with minPts = 13.

Figure 7
Mutual influence of the two DBSCAN parameters minPts and ": (a) plot
of minPts for all difference vectors of a data set of material A keeping "
fixed (" = 3); (b) plot of " for all difference vectors keeping minPts fixed to
75.



for instance, as seen in Fig. 7, " = 3, minPts = 250 and " = 1.8,

minPts = 75.

5. Examples

Hereafter some examples of unit-cell basis-vectors determi-

nation using DBSCAN from ADT data are presented. The

clustering routine has worked successfully when the clusters

that are found form an equidistant three-dimensional lattice

reasonably describing all difference vectors. From all the

clusters that are found, three clusters are selected auto-

matically, representing three shortest non-coplanar vectors.

The three vectors are sorted by their length and assigned to a*,

b*, c* (therefore, the lattice parameters may appear in

nonstandard crystallographic settings). For a primitive lattice

these vectors directly describe the unit cell, for a centred

lattice they have to be transformed into the correct settings.

The test materials are summarized in Table 1. The lattice-

parameters determination of two inorganic (A and B) and two

organic (C and D) samples are described. The DBSCAN

clustering procedure was used within the ADT3D program

(Nanomegas, Belgium).

For the materials listed, the positions of the reflections were

found within the reconstructed reciprocal volume. Then for

these positions difference vectors were calculated. The

difference vectors were then subjected to a DBSCAN clus-

tering routine. The unit-cell parameters were determined

based on the clusters closest to the origin. A summary of the

data clustering is presented in Table 2.

5.1. A: barite

The barite tilt series is the easiest and most straightforward

example. The data were collected within a large part of the

reciprocal volume (2/3 of the complete reciprocal space). A

little less than one thousand reflections were found for the

unit-cell determination procedure and from these 17 748

difference vectors were produced (Table 2). These are not all

the difference vectors that can be calculated between the

reflection positions; only the difference vectors closest to the

origin within a given resolution shell are calculated, as these

are the most likely to include the basis vectors of the lattice.

The clustering procedure with parameters " = 2, minPts = 100

resulted in 42 clusters forming a clear lattice (see Fig. 8). Only

a few difference vectors (8%) were rejected from clustering

and assigned to noise in the data. The lattice parameters are

found automatically as the three shortest non-coplanar vectors

and assigned to a*, b*, c*, and therefore always appear in the

descending sequence: 8.90, 7.23, 5.53 Å. The lengths of the

vectors match well with the expected values (Table 1). The

angles are all close to 90� with an accuracy of better than 0.5�.

5.2. B: pseudo-spinel

Long lattice parameters especially in combination with

short lattice vectors usually require additional tuning of the

clustering parameters. The pseudo-spinel example demon-

strates unit-cell determination for a material with very

different lengths of the unit cell in different directions. The

data were collected within a large tilt range (Table 2) and 5816

difference vectors were selected for clustering. Selecting the

value of the neighbourhood parameter " close to or higher

than the distance between the lattice nodes causes fusion of

clusters. Fig. 9(a) shows a result of a clustering procedure

using too high a value for the neighbourhood ". The situation

is resolved by decreasing " to 2 with the subsequent adjust-

ment of minPts (here minPts = 15). With these clustering

parameters compact equidistant clusters are produced along

the problematic direction.

Remarkably, the same data were not able to deliver the

unit-cell vectors using the one-dimensional Fourier transform

routine (Fig. 2c,d). This demonstrates the advantage of the

clustering approach for electron-diffraction data with long

lattice constants.

This example demonstrates the intrinsic limitation of the

clustering regarding long crystallographic axes. As long as the
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Figure 8
Difference-vector space of barite. (a) The points assigned to clusters are
coloured, noise points are grey; (b) the centres of clusters building a
periodic lattice are shown in red. The unit-cell vectors a*, b*, c* are
colour-coded as red, green and blue.

Table 2
Data for the clustering procedure for the test samples.

Sample

A B C D

Tilt range (�) 121 111 61 180
No. of reflections 978 424 246 1626
No. of difference vectors 17748 5816 6112 79932
No. of clusters 42 44 52 108
No. of difference vectors

assigned to clusters
16296 3478 1958 79462

No. of difference vectors
assigned to noise

1452 2338 4154 470

Fraction of noise in the
difference vectors (%)

8 40 68 <1

a0 (Å)† 8.90 32.50 16.97 36.65
b0 (Å)† 7.23 5.11 11.15 8.04
c0 (Å)† 5.53 5.08 7.37 7.85
� (�) 90.14 119.57 90.12 99.49
� (�) 90.27 90.31 90.05 90.08
� (�) 89.52 89.89 88.14 90.04

† The unit-cell parameters a0, b0 , c0 are automatically found after the clustering has been
done, and therefore appear in descending order. The order does not correspond to the
standard crystallographic settings used in Table 1.



distance between the nodes of the lattice is significantly larger

than the neighbourhood " and the amount of noise in the data

is not too high, there is no problem in determining a proper

value for minPts able to separate the clusters and thereafter

determine the lattice basis vectors. When " is close to or higher

than the distance between the lattice nodes, difficulties may

occur in separation of clusters. The effective size of the cluster

is determined by the data (crystal) quality, so it is not possible

to put a rigid limit on the crystallographic axis length. Prin-

cipally, if there is only one long axis in the structure, and the

cluster separation along this direction failed, the data can be

extracted along these lines and treated specially in order to

elucidate the periodicity. Further discussion on this point is

beyond the scope of this paper.

5.3. C: orthorhombic paracetamol

ADT data from organic crystals have two major problems:

(i) since the crystalline lattice degrades fast under the beam,

the tilt sequences are usually very short; and (ii) the diffracted

intensities are very weak, so noise peaks will be found toge-

ther with the reflection positions. In short, the ADT data of

organic crystals are particularly noisy and provide a very

limited part of reciprocal space.

Fig. 10 shows the difference-vector space of orthorhombic

paracetamol. The amount of noise in the difference-vector

data is particularly high – 68% (Table 2). Nevertheless, the

basis vectors were found automatically. The high amount of

noise in the data results in more spread out (less compact and

less dense) clusters. This can significantly affect the resulting

lattice parameters. The angle between the two long axes (two

clusters nearest to the origin) is predominantly sensitive to

noisy data: thus the highest deviation of the angles here was

observed for � (88.14 versus 90�).

The two examples B and C demonstrate two different cases

of problems in data clustering: a long crystallographic axis and

low quantity of data/noisy data. For these two cases the clus-

tering parameters were adjusted manually to achieve the final

result. Nevertheless, for data with insufficient sampling along

an axis or when there is too much noise in the data, the

method may fail to find the unit-cell vectors that describe the

reciprocal lattice.

5.4. D: propellan – X-ray data

The data for propellan were collected on a Stoe diffract-

ometer (Stoe & Cie GmbH, Darmstadt, Germany) with Mo

K� radiation. The reciprocal volume was created within the

X-Area software (Stoe) and then converted to an MRC file

with an x3D-to-MRC converter. The three-dimensional

diffraction volume was created from a single ! run of 180

frames with an ! increment of 1�. For the three-dimensional

interpolation, the data were taken up to 0.6 Å diffraction

resolution and binned in steps of 0.003 Å. The resulting

volume had dimensions (in voxels) of 401 � 401 � 401. The

MRC volume was then opened in ADT3D and processed

(peak search and determination of unit-cell parameters) as

usual.

The unit-cell parameters found via DBSCAN clustering

match well with those from X-Area (Tables 1 and 2). The

striking difference to electron-diffraction data is the low

amount of noise in the data – less than 1% of the difference

vectors were rejected by the clustering routine. Fig. 11 shows

the difference-vector space of propellan. No noise is seen in

the data.

The high quality of X-ray data compared to electron ADT

data explains why the projection Fourier analysis was able to

find the periodicity in X-ray data, and often fails for electrons.

The clustering approach applied here provides a reliable

unit-cell metric, and can in principle be used for single-crystal
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Figure 10
Difference-vector space of orthorhombic paracetamol. (a) The points
assigned to clusters are coloured, noise points are grey; (b) the centres of
clusters building a periodic lattice are shown in red.

Figure 9
Pseudo-spinel, a structure with one large lattice parameter. (a) Clustered
difference vectors using too high a value of "; (b) centres of the clusters
found using a high value of the neighbourhood; (c) clustering procedure
using a reduced " with adjusted minPts; (d) cluster centres using a low
value of " forming a lattice.



X-ray data when the data quality is not satisfactory for the

Fourier analysis method.

6. Conclusion

The clustering is an essential part of automated diffraction

tomography (ADT) data processing, delivering the lattice

basis vectors for single-crystal electron-diffraction data. In the

present paper the concepts of cluster analysis and various

methods were reviewed. From the list of clustering approaches

a density-based algorithm DBSCAN was selected and applied

to electron ADT data.

The determination of the unit-cell metric using DBSCAN

was demonstrated by several examples. In all cases, the clus-

tering approach was able to find the unit-cell vectors. The

robustness of the method was demonstrated by an example of

the determination of the unit cell of orthorhombic para-

cetamol represented by particularly noisy data. An example of

unit-cell parameters determination from single-crystal X-ray

data was also given.

The lattice-basis-vector determination approach through

difference-vectors clustering as presented in this paper has a

general character and can be applied to any kind of single-

crystal diffraction data. It is robust for low amounts of data

and high levels of noise, and can therefore be applied when

other methods have difficulties. Thus, the clustering approach

can be applied where limited single-crystal data are available,

such as in the case of diamond anvil or environmental cells, or

if a crystal has degraded prematurely in the beam, leaving a

limited data set to work with.
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Panthöfer, M., Tremel, W. & Kolb, U. (2012). Angew. Chem. Int. Ed.
51, 7041–7045.

Ng, R. T. & Han, J. (1994). Proc. 20th Intl Conf. Very Large
Databases, Santiago, Chile, pp. 144–155. San Francisco: Morgan
Kaufmann Publishers.

Niggli, P. (1928). Handbuch der Experimentalphysik, Vol. 7, Part 1,
pp. 108–176. Leipzig: Akademische Verlagsgesellschaft.

Acta Cryst. (2012). A68, 536–546 Sebastian Schlitt et al. � Unit-cell parameters from electron diffraction 545

research papers

Figure 11
Difference-vector space of propellan built using X-ray data. (a) The
points assigned to clusters are coloured, noise points are grey; (b) the
centres of clusters building a periodic lattice are shown in red.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5008&bbid=BB28


Rossmann, M. G. (2001). International Tables for Crystallography,
Vol. F, edited by M. G. Rossmann & E. Arnold, pp. 209–211.
Dordrecht: Kluwer Academic Publishers.

Sauter, N. K., Grosse-Kunstleve, R. W. & Adams, P. D. (2004). J. Appl.
Cryst. 37, 399–409.

Sibson, R. (1973). Comput. J. 16, 30–34.
Steller, I., Bolotovsky, R. & Rossmann, M. G. (1997). J. Appl. Cryst.

30, 1036–1040.

Vainshtein, B. K. (1964). Structure Analysis by Electron Diffraction.
Oxford: Pergamon Press.

Zhang, T., Ramakrishnan, R. & Miron Livny, M. (1996). Proc. 1996
ACM SIGMOD Intl Conf. Manag. Data Montreal, Quebec,
Canada, edited by H. V. Jagadish & Inderpal Singh Mumick, pp.
103–114. ACM Press.
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